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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 30, No. 3, August 1989

 ON CONTINUITY OF THE UTILITY FUNCTION IN

 INTERTEMPORAL ALLOCATION MODELS: AN EXAMPLE

 BY PRAJIT K. DUTTA AND TAPAN MITRA1

 A standard model of intertemporal allocation (described by a technology set,

 and a welfare function defined on consumption) can be reduced to one

 described by a technology set, and a utility function defined on this set. We

 present an example to show that even when the welfare function is concave,

 monotone and continuous, the utility function can be discontinuous. We also

 provide sufficient conditions on the technology set and the welfare function

 under which the utility function is continuous. Our results indicate that the

 common practice of assuming continuity of the utility function is more

 restrictive than might be apparent.

 1. INTRODUCTION

 A well-known model of optimal intertemporal allocation is described by a

 technology set of input-output pairs, l, and a welfare function, w, defined on
 (nonnegative) consumption bundles. (Strictly speaking, one also specifies a dis-

 count factor to represent intertemporal preferences, but this will not be of direct

 concern to us here.) It is standard to assume regarding il that inaction is possible,
 and free production is impossible; production possibilities are closed and convex;

 free disposal is allowed, and it is impossible to sustain "large" input levels.

 Similarly, it is standard to assume regarding w that it is concave and upper

 semicontinuous.

 Given this framework, we can associate with any input pair (x, z) a feasible

 output set, g(x, z), which is the set of outputs, y, producible from x, such that y :
 z. That is, given an input level for this period, x, and an input level for next period,

 z (which can be technologically attained in one period from x), g(x, z) is the set of

 outputs which allow one to reach the input level, z, after consuming a nonnegative

 amount (y-z). Under free disposal the set of feasible input pairs is of course exactly

 fQ, which is hence the domain of g. (In the sequel, il shall interchangeably refer to
 the set of feasible input-input and input-output pairs and the correct interpretation

 shall be clear from the context.) Then, one can associate with a pair (x, z) on l, a
 utility level, u(x, z), defined as the maximum welfare obtainable among such
 consumption bundles (y-z), where y is in the feasible output set. (For precise

 definitions of these concepts, see Section 2.)

 Thus, the "consumption model" has been "reduced" to one which can ade-

 quately be described by a technology set, il (satisfying the standard assumptions
 stated above), and a utility function, u, defined on QI. This "reduced" framework

 ' Research of the second author was supported by an NSF grant, and an Alfred P. Sloan Research

 Fellowship. We are indebted to William Dean, Ali Khan, Lionel McKenzie, Yaw Nyarko and Bezalel

 Peleg for helpful discussions, and to two referees for many insightful comments.
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 528 PRAJIT K. DUTTA AND TAPAN MITRA

 has been studied by a number of authors (see Gale 1967; McKenzie 1968, 1976,

 1982; Brock 1970; Sutherland 1970; Flynn 1980) in developing the major results of

 optimal intertemporal allocation theory. For this purpose the utility function is

 assumed to be concave, non-decreasing in this period's input, non-increasing in

 next period's input, and continuous on QI.

 In order to treat the consumption model as a special case of these studies, then,

 we have to check whether the utility function, as defined above by us, can be shown

 to satisfy these properties. We establish (in Section 2) that the utility function is

 concave, non-decreasing in this period's input, non-increasing in next period's

 input, and upper semicontinuous on Ql.

 The important question that remains to be answered then is whether or not the

 utility function is continuous as well, on QI. We provide an example in Section 3 of

 a technology set, il (satisfying all of the above-stated assumptions), and a welfare
 function, w (which is concave, continuous and monotone in consumption), such

 that the utility function, u, generated by them fails to be continuous. Since

 continuity of it is used at several crucial points in the above-mentioned studies, the

 example demonstrates that it is important to develop the major themes of optimal

 intertemporal allocation theory (possibly by using some alternative methods)

 without the continuity assumption on it. Some of the contributions in this direction

 include Peleg (1973), Khan and Mitra (1986), Dutta and Mitra (1985), and McKenzie

 (1986).

 The example of Section 3 turns out to be far from simple to construct, and points

 to the possibility that for some broad classes of technology sets or welfare

 functions, the utility function may be shown to be continuous. In Section 4, we

 confirm this by establishing the continuity of the utility function when either (i) the

 technology set is "locally simplicial," or (ii) the welfare function is "indecom-

 posible."

 2. PRELIMINARIES

 This section is organized in the following way. Subsection 2a introduces most of

 the notation and definitions used in the paper. The second subsection 2b describes

 a familiar model of intertemporal allocation theory in terms of a technology set, gl,
 and a welfare function, w, where welfare is derived from consumption of goods.

 The model is then "reduced" to one in which utility is derived from this period's

 and next period's input levels. We show in 2c, that the utility function, so defined,

 has some useful properties which can be derived from the standard assumptions on

 the technology set, fQ, and the welfare function, w.

 2a. Notation and Definitions. Let R'.1 be an in-dimensional real space, with

 Euclidean norm, H1. For x, y in Ri l, x : y means x; : yj for j = 1, ..., m; x > y
 meansx yandx 7y;x ymeansxj >yjforj= 1, ...,m.Theset{xERl:
 x - 0} is denoted by R7.

 Let A, B be subsets of R ' and R "' respectively. Let a ? E& A. (i) A correspondence
 G: A -- B is lower hemicontinuoius at ao if "a" -> ao and bo E G(a0)" imply
 that there is an integer ni, and a sequence b' & G(a') for n n -, such that
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 lim,. V = b0. (ii) G is upper hemicontinuous at ao if G(a0) is nonempty and

 compact, and "a" -> a0, W E G(a') for all n" imply that there is a converging

 subsequence of (bV), whose limit belongs to G(a0). (iii) The correspondence G:
 A -- B is continuous at ao if it is both upper and lower hemicontinuous at ao.

 The correspondence G: A -> B is lower (upper) hemicontinuous on A, if it is

 lower (upper) hemicontinuous at each point of A. It is continuous on A, if it is both

 upper and lower hemicontinuous on A.

 A function, f: A -> R is upper semicontinuous at ao E A, if "a' E A, and

 an , a0" imply "lim,1,0 supf(a'1) sf(a0)." It is upper semicontinuous on A if it
 is upper semicontinuous at each point of A. It is lower semicontinuous at a0 E A

 [on A] if (-f) is upper semicontinuous at a0 E A [on A]. It is continuous at a0 E
 A [on A] if f is both upper and lower semicontinuous at a0 E A [on A].

 2b. The Model. The framework is described by (l, w), where l, a subset of

 R x R'+, is the technology set and w: R'+ R is the welfare function. The
 following assumptions on il and w are fairly standard:

 (A.l) (i) (0, 0) E Q.l (ii) (0, y) E f implies y = 0.

 (A.2) fl is a closed subset of R'+ x R7.

 (A.3) fl is a convex set.

 (A.4) If (x, y) E l, and x' - x, and 0 S y' - y, then (x', y') E Ql.

 (A.5) There is a positive number /3, such that "(x, y) E fl and 11xl > /3" imply
 IY IXII.

 (A.6) w is a concave function on R +.
 (A.7) w is upper semicontinuous on R".

 For (x, z) EE f (here z is "next period's input"), we can define afeasible output

 correspondence by

 (2.1) g(x, z) = {y E R'l: (x, y) E Ql, and y : z}

 Thus, g(x, z) is the set of outputs producible from input x which makes it possible

 to have an input vector of z (in the next period), after some nonnegative

 consumption ((y - z) , 0).

 Note that g is a correspondence from QI to R ..; it is non-empty valued (since z E

 g(x, z)) and closed valued (since QI is closed). Furthermore, it is well-known that if

 (x, y) E QI then IIyI 1 max [ x/3], B(x), where ,B is given by (A.3). Thus g is
 compact valued.

 For (x, z) E fQ (again, z is "next period's input"), we can define a utility function
 by

 (2.2) u(x, z) max w(y - z) subject to y ( g(x, z).

 Since w is upper semicontinuous (and g is nonempty and compact valued) so u is
 well-defined on fl. It is the maximum welfare obtainable, if this period's input is x,

 and next period's input is z, through suitable production and consumption in the
 next period.
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 2c. Upper Semicontinuity and Concavity of the Utility Function. We will

 show in the next section that the utility function is not, in general, continuous.

 However, one can demonstrate that the utility function is upper semicontinuous

 and concave.

 THEOREM 2.1. Suppose (QI, w) satisfy (A. 1) through (A.7). Then (i) the feasible
 output correspondence, g, is upper hemicontinuous on QI, and (ii) the utility
 function, u, is upper semicontinuous and concave on Ql. Also, if (x, z) E fQ, and
 x' x, and 0 <z' - z, then u(x', z') : u(x, z).

 PROOF. Let (x0, zo) EE Ql. Define, as usual, B(x) max (,/, jjx||); then for
 (x, z) E gl, jjzI - B(x) (see Khan and Mitra 1986). Next, define N(x0, zo) =
 {(x, z) EE K: jjxjj I B(x0) + 1, IIzII - B(x0) + 1}. If (x, z) E N(x0, zo), and y E g(x,
 z), then Ily 1 B(x) = max (,/, j|x||) - max (/3, B(x0) + 1) = B(x0) + 1.

 Since g is a non-empty and compact valued correspondence, we can check its

 upper hemicontinuity at (x0, zo) as follows. Let (x", z") -> (x0, zo), and y" E g(xtl,
 zn). Clearly, ((X",, z") E N(x0, zo) for all n beyond some h. Then since

 ||Y"11 - B(x0) + 1, as checked above, so there is a convergent subsequence (yn')
 converging to yo. Since (x"', y/") E ft and yn7 z"' and (x"', y", Zn') -> (Xo, yo,
 z?), so (x0, yo) E KI and y0 : z0 (since ?l is closed). So yo E g(x0, zo), and g is
 upper hemicontinuous at (x0, zo). Since (x0, zo) was arbitrary in l, so g is upper
 hemicontinuous on fQ. Now, by adapting the argument of Berge (1963, p. 116), u is

 upper semicontinuous on fQ.

 From the fact that the graph of g -{(x, z, y) E R 3': y H g(x, z)} is convex and

 w is concave, it easily follows that u is concave on (2.

 Since x' : x, and 0 - z' - z implies that g(x', z') D g(x, z), it easily follows that

 u(x', z') -?: u(x, z).

 REMARK. Peleg (1973) establishes a result analogous to Theorem 2.1. However,

 his assumptions on the technology set and welfare function differ somewhat from

 ours (in particular, Ql is compact in his framework, but not in ours). We have
 therefore, presented the result with the proof to keep the exposition self-contained.

 3. DISCONTINUITY OF THE UTILITY FUNCTION: AN EXAMPLE

 Let us now turn to the following question: Is the reduced utility function u

 continuous on Ql? A number of authors (Gale 1967; McKenzie 1968, 1976, 1982;

 Brock 1970; Sutherland 1970; Flynn 1980; among others) have used the input model

 (ft, u) but under the assumption that the utility function u is continuous on the
 technology set f. If the input model is to be seen as the more general framework
 of which the (above) consumption model is a special case, one needs to show that

 the reduced utility function is indeed continuous on Ql.

 Note that since R is boundedly polyhedral (see Gale, Klee and Rockafellar
 1968, p. 869), so (A.6) and (A.7) imply

 (A.8) w is continuous on R'7.
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 Given this, it seems reasonable to try to use the Maximum Theorem of Berge (1963)

 to establish continuity of it. The answer then clearly hinges on the continuity of the

 feasible output correspondence, g, defined in equation (2.1). And since we already

 know from Theorem 2.1 that g is upper hemicontinuous on l, so the critical issue
 is the lower hemicontinuity of g on Ql.

 The purpose of this section is to present an example of a technology set, fQ, and
 a welfare function, w, such that (a) il satisfies (A.1) through (A.5), and (b) w

 satisfies (A.6), (A.8) (and is monotone increasing in consumption) such that the

 feasible output correspondence, g, fails to be lower hemicontinuous, and further-

 more the utility function, u, defined by equation (2.2), fails to be continuous.

 The example we present below is not a simple one; nor is it easy to construct. To

 see the difficulties, note right away that since u is concave on ft (Theorem 2.1), it

 is continuous in the interior of l, so discontinuities, if any, can arise only at the
 boundary. Since u is also upper semicontinuous on l, behavior even at the
 boundary is considerably restricted. Also, note that the feasible output correspon-

 dence, g, is the intersection of two correspondences both of which are lower

 hemicontinuous. In general, the intersection of two lower hemicontinuous corre-

 spondences is not lower hemicontinuous (which "explains" why we can construct

 an example); however, it is easy to check that in the one-good model (m = 1), the

 intersection of these correspondences is indeed lower hemicontinuous (which

 "explains" why we present a two-good example).

 3a. Description of the Technology Set. Define a technology set fi in
 R2 x R 2 in the following way. Denoting the vector (1, 1) by e, we have ex =

 (xl + x2) for every x = (xI, x2) in R +. For x = (xI, x2) E R +, define A(x) =
 1Y = (Yi, Y2) in R2: (y, Y2) , Xex, 0) if ex < 1; (7l, Y2) O (1, 1) if ex : 1}. The
 graph of A is the set {(x, y) in R 2 X R 2: y E A(x)}, and we denote it by grA. Now,
 define the technology set to be the convex hull of grA. That is, ft con [grA].

 3b. A Characterization of the Technology Set.

 Let Cl-{(x, y) in R+ x R2:x + x21}

 C2 {(x, y) in R+ X R2: x +x2? 1}.

 Clearly, con (grA) = [con (grA) n Cl] U [con (grA) n C2]. It is straightforward to
 check that

 (3.1) con(grA) nC2={(x,y) R+XR +:x1+x2 1,ys e}

 = con [grA n C2].

 We shall now show that

 (3.2) con (grA) n c, = con [grA n c,].

 By Caratheodory's Theorem (x, y) E con (grA) n cl implies that
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 5 5

 (x, y) = A'(x', y'), A'id, >A'= 1, (x', y') E grA, exs 1.

 Without loss of generality suppose A i > 0 for all i and for i = 1, ..., k, exi < 1. [If
 there are no such xi, then it must be that ex' = 1, i = 1,..., 5 (and

 ex = 1)]. Denote, x-l = ,- I A i/A I + + A k xi. Then eAfl < 1. Similarly define y5.
 Let us now define, x-2 = >i5k+I Ai/Ak+I + *. + A5 xi and Y2 similarly. Again
 ex, 1. From the above we have

 (x, y) = A 1Y1) + A 2(x2, Y2),

 _ = k Ai, 4r = ,k? A,. Hence, _ l + 02 = 1, i 0 0, i = 1, 2. Further it is
 easy to check that

 k A k

 E1 AI yi E, A (Vex ?5 ) < (Ge (xf ) 0)
 i= l Al ++ Ak i= l A I + + A,

 So, )-, E A(xi). Also -2 S e and hence, 5- E A(x-,). Let us now define X-3 as the
 intersection of the line-segment x-l to x-2 with the hyperplane ex = 1. Clearly,

 x= 1X1 + 02X2,

 where0n 6l S uL1, 62 A i2 and 6 + 06 = 1. If 53 = [(y - 61)/02 YI + (A 2/02)
 Y2e, then it is easy to check that Y3 E gr(R3) and

 y= 06y1 + 02Y3.

 All of the above establishes that, [con (grA) n cl] C con [(grA) n Cl]. The

 converse inclusion holds trivially and hence (3.2) is proved. Collecting (3.1) and
 (3.2) we have

 (3.3) Q = con (grA) = con [grA n C1] U con [grA n C2].

 3c. The Technology Set Satisfies (A. 1) through (A.5).

 (1) (i) Since 0 E A(O), so (0, 0) E grA and hence is in con (grA).
 (ii) It is clear that if 0 = >5=I AYx', then A' > 0 implies xi = 0. From this

 and the fact that y' E grA(O) implies y' = 0, (A. 1) (ii) follows.
 (2) From (3.3) we can see that Q is the union of two sets. The first is the convex

 hull of a compact set and hence is closed. The second is a closed set, as can
 be seen from (3.1). Hence, Q is closed.

 (3) Q is convex by construction.

 (4) It is easy to verify that if (x, y) E grA, and x - x, and 0 S - y, then (x,
 y) E grA. It remains to check that this (free-disposal) property is preserved

 by the convex-hull operation.
 To this end, let (x, y) E con grA, and Y - x, 0 S y y. Define for

 j = 1, 2, bju = (yjlyj) if yj > 0, Aj = 0 if y. = 0; then 0 - Aj - 1, for] = 1,
 2. Define the matrix
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 [10 12

 then y = ,y.

 Since (x, y) E Q, so by Carathedory's theorem, there exist (x', y') E grA,

 and AI (i = 1, . .., 5), such that A' >0, I A' = 1, and (x, y) = ,s 1 A'(x',
 y') Now, for i =1, ..,5, define ri = x' + (Xi-' x), and y-' = AuyJ
 Then x-i ? xi, and 0 S S y', so (x-i, y i) E grA for i = 1, ..., 5. Also, II,5
 AIX = I= I A x + (x--x) >5-1 A' = x + (x - x) = x-; and, I- A' ' =
 A',uy= , I A'y' = ,uy = v. Hence (x, v) E con (grA) =

 (5) Note that for all (x, y) E grA, 0 O y - e. Hence, for all (x, y) E Q, 0 l y y
 e. Pick ,3 = 2. Then for (x, y) E Q, ||x|| > 83, we have ex x > 2, while

 IIyII - ey v 2, so that IIyII < |x||.

 3d. A Property of the Technology Set. For the purpose of our example the

 following property of the technology set will be crucial. Let x = (xi, x,), ex < 1,
 z = (\ex, 0). Then (x, y) E Q, y - z implies z = y. Note that (x, z) is in grA, and
 so is in Q. The assertion is interesting for it implies that (x, z) cannot be expressed

 as a convex combination of other points in the graph of A. Suppose to the contrary

 that (x, y) E Q, y - z and (x, y) = >i 1 A'(x', y'), where without loss of generality,
 A > 0,>iL A' = I and (xi, yi) E (grA n c1) (using (3.3)) and not all xi = x. Then,

 5 5

 (3.4) y e 1/ex and so A A'y' Ai'!'exi< VA'(exi) = l/ex

 Clearly (3.4) yields a contradiction and the assertion is proved.

 3e. The Feasible Output Correspondence is not Continuous. We shall now

 show that the feasible output correspondence (see (2.1)) is not lower hemicontin-
 uous.

 Define r? = zo = (1, 0). Define x' = (n-2(n + 1)2, 0) and z' = (\/ext, 0). Clearly,

 (x', z') E Q for n ? 1 and (x', zI') -> (x, z0), as n -x oc. Also,
 y? = (1, 1) is in A(x0) and hence (x?, vy) is in Q. Clearly, yo - z" and
 hence y" E g(x', z By the property proved in 3d, y' E
 g(x'1, z' ) implies y'l = z ". Thus for every sequence {y }, such that y'" E g(x'", z'"),

 we have Ily" - yoll - 1 for n - 1. Hence, g is not lower hemicontinuous at (x", z0).

 3f. The Utility Function is not Continuous. Define a welfare function, w1A:

 R R as follows. For c = (c1, c,) inR , R '(c) = cl + c2. Then w satisfies (A.6),
 (A.8) and is monotone increasing in (c 1, c2). For (x, z) E Q, the utility function, M:
 -> R is defined by:

 ll(x, z) = max [(y I - z1) + (Y2 - Z2)]3
 y E g(j, xz)
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 Note that for each (x, z) E Q, the set of y E g(x, z) is a non-empty, compact set, and
 e(y - z) is a continuous function of y. Hence ui(x, z) is well-defined, for each

 (x, z) E Q.
 Let (x", z') and (x0, z0) be defined as in Section 3e. Then since y" E g(x", zt)

 implies z' = y, so u(x', z') = 0 for n - 1. However, y0 (1, 1) is in g(x0, z0),
 and so u(x0, z0) - (yg - z2) = 1. Thus, although (x', z'), (x0, z0) are in Q, and
 (Xn, z') _, (x0, z0) as n >o , we have [u(x0, z0) - u(x', zt')] - 1 for all n - 1. So,

 u is not lower semicontinuous at (x0, z0).

 REMARK. Peleg (1973) asserts that, in a framework in which ii is derived from w

 and (2 by (2.2), u is not continuous even if w is continuous. We note that, in his

 framework, Q is only restricted to be compact, convex and productive (there is (x,

 y) in fl with y > x). An example displaying the lack of lower hemicontinuity of g,

 and a lack of lower semicontinuity of it, is therefore easier to construct in his

 framework than in ours. See, in this connection, the simple example discussed in

 Dutta and Mitra (1985, p. 4).

 4. CONTINUITY OF THE UTILITY FUNCTION: TWO RESULTS

 The example of the previous section shows that the utility function is not, in

 general, continuous. However, the difficulties of constructing such an example also

 point to the possibility that for some broad classes of technology sets or welfare

 functions, the utility function would in fact be continuous. In this section, we

 briefly discuss two such cases. One is the case where the technology set (besides

 satisfying (A.1) through (A.5)) is "locally simplicial," and the welfare function

 satisfies (A.6), (A.7). The other is the case where the technology set satisfies (A. 1)

 through (A.5), and the welfare function (besides satisfying (A.6), (A.7)) is assumed

 to be "indecomposible" (which means that every good is essential for a welfare

 level higher than the welfare level from zero consumption).

 Let A be a subset of R m with 0 E A. A functions A -> R is called indecomposible
 if "a E A and f(a) > f(0)" imply "a > 0." We shall not define locally simplicial
 sets formally (see Rockafellar 1970; and Dutta and Mitra 1985). It suffices to note

 that they include simplices, polytopes and polyhedral convex sets.

 THEOREM 4.1. Suppose Q satisfies (A.1) through (A.5), and w satisfies (A.6),

 (A.7). Further, suppose Q is locally simplicial. Then, the utility function, it, is

 continuous and concave on Q.

 PROOF. From Theorem 2.1, we know that u is upper semicontinuous and

 concave on Q. Since Q is locally simplicial and it is concave on Q, so u is lower
 semicontinuous on Q as well, by adapting the argument of Gale, Klee and

 Rockafellar (1968, p. 868) or Rockafellar (1970, p. 84). Hence, u is continuous and

 concave on Q.

 THEOREM 4.2. Suppose Q satisfies (A.1) through (A.5), and w satisfies (A.6),

 (A.7). Further, suppose w is indecomposible. Then, the utility function, i, is

 continuous and concave on Q.
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 PROOF. From Theorem 2.1, we know that u is concave and upper semicontin-

 uous on Q. So it remains to prove that it is lower semicontinuous on Q as well.

 Suppose, on the contrary, that u fails to be lower semicontinuous at some point

 (x0, z0) E Q. Then, there is 6 > 0, and a sequence (xv, z'") -> (x0, zo), such that

 (4.1) u(x', z") S u(x0, zo) - 6 for all n.

 Pick yo E g(x0, z0) such that w(yo - z0) = u(x0, zo). Since we clearly have

 U(x0, z0) D w(zo - zo) = w(O), there are two cases to consider: (i) w(yo - zo) =

 w(O); (ii) )(y0 - z0) > w(O).

 In case (i), we pick y" = z" for all n. Then y'1 E g(x'1, z"), and u(x'", z'") ?
 w(y" - z'1) w(O) = w(y? - z0) = u(x?, z0).This contradicts (4.1).

 In case (ii), we know that yo >> zo since w is indecomposible. Pick 0 < A < 1,

 such that

 (4.2) Ay?>zo and [w(Ay0-z0)-%w(y0-z")] D (-H/4).

 This is possible since w is continuous on R7'. Since (x", z") -> (x?, z?), there is N

 such that for n - N

 (4.3) x' ? Ax0, zn - Ay0, and w(Ayo - z") : w(Ay? - z?) - (6/4).

 Again this is possible since w is continuous on R'. Since (0, 0) E (2 and (2 is
 convex, so (Ax?, Ay?) E Q and by free-disposal (A.4), (x", Ay?) E Q for n : N.

 Thus Ay? E g(x', z') for n - N, and so u(x", z'2) > w(Ay? - z") = w(y? - z?) +

 rw(Ayo - z") - w(Ay- z?)] + [w(Ay? - z?) - w(y? - z0)] : w(yo - zo) - (6/2)
 (using (4.2) and (4.3)) = u(x?, z?) - (6/2), which contradicts (4.1).

 REMARKS.

 (i) It will be obvious from the proofs of Theorem 2.1 and 4.2 that concavity of w

 is needed only to prove the concavity of u; thus, continuity of w implies continuity

 of u in Theorem 4.2 whether or not w is concave.

 (ii) The proof of Theorem 4.1 uses both the concavity and upper semicontinuity

 of w to show the continuity of u. This makes the proof very short. We note,

 however, that using only (A. 1) through (A.5) and the fact that Ql is locally simplicial,

 one can prove the lower hemicontinuity of g. This implies, by Theorem 2. 1, that g

 is a continuous correspondence. Then, continuity of w implies the continuity of it

 (by the Maximum Theorem of Berge 1963), whether or not w is concave. (The proof
 is considerably longer, using this route.)

 (iii) In the one-good model (m = 1), the welfare function is trivially indecom-

 posible, so if w satisfies (A.6), (A.7), (or if w satisfies (A.8)) then by Theorem 4.2,

 it is continuous on Q.

 Columbia University, U.S.A.
 Cornell University, U.S.A.
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